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HARRY PAUL

Quantum mechanical indeterminacy

1. Introduction

One of the basic quantum mechanical features is a novel uncertainty concept. While

in classical physics uncertainty is equivalent to lack of knowledge – any physical

quantity has a determined value at any instant of time, but usually we don’t know it

and hence must resort to a statistical description –, the quantum mechanical uncer-

tainty is an intrinsic property of microscopic systems. In fact, it is a new logic cat-

egory that goes beyond the simple either-or scheme (which is so efficient at master-

ing our life). A typical example of quantum mechanical indeterminacy is the path

uncertainty of a photon (likewise, an electron or a neutron) in an interferometric de-

vice, which forbids us to visualize the particle as being localized.

Actually, nonlocality is well known also from classical wave theory, especially

from optics. In an interferometer, an incoming wave will be divided, by a beam-

splitter, into two coherent parts which travel along spatially separated paths, how-

ever, contrary to the quantum mechanical picture, both parts are ‘objectively real’.

In particular, a measurement on one partial wave will in no ways affect the other.

Generally speaking, in the quantum mechanical formalism uncertainty is a direct

consequence of the operator character of the observables. Notably canonically con-

jugate variables such as position (x) and momentum (p) are represented by Hermi-

tian operators that fulil canonical commutation relations

[x, p] ≡ xp – px = iħ1, (1)

where ħ is Planck’s constant divided by 2π. From this equation it is easily proved

(see for instance [5]) that the uncertainties of x and p, Δx and Δp, are bound to sat-

isfy the famous Heisenberg uncertainty relation

Δx ⋅ Δp ≥
2

h
. (2)

It is important to note that this condition applies to pure states, in contrast to

classical theory in which Δx = Δp = 0 for a pure state. It becomes obvious from

equation (2) that x and p cannot be simultaneously sharp. This is in agreement with

the experimental fact that you cannot directly measure both x and p simultaneously
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on one and the same system. (The same holds true for any pair of conjugate vari-

ables.) You have to make a decision whether you want to measure x or p, and this

measurement will strongly disturb the system.

So we have to put up with the existence of an intrinsic quantum mechanical in-

determinacy. This will not irritate us too much when we think of uncertainties that

are of truly microscopic dimensions, as we ind them, in particular, in the behavior

of electrons bound in atoms or molecules. Here, Heisenberg’s uncertainty relation

(2) contradicts the classical concept of orbits. But this is a very tiny effect we need

not worry about.

However, quantum mechanical uncertainties can extend over manifestly macro-

scopic dimensions! (Note that the relation (2) is an inequality!) This is the irst point

that will be treated in the following. Further, the important role uncertainty plays in

experiments with entangled systems, will be discussed. Finally, it will be explained

how uncertainty might be utilized in quantum computers.

2. Macroscopic position uncertainty

It is well known from classical optics how an interferometer works. An incident

light beam is split at the entrance mirror into two beams that travel along different

paths and eventually become reunited at the exit mirror. The outgoing light pro-

duces an interference pattern whose position is determined by the difference of the

phases the two partial beams acquire during their passage through the interferome-

ter. Actually, this phase difference is a geometrical quantity; it is the difference of

the armlenghts in units of the wavelength of the light. This is easily understood.

However, we run into troubles when the interferometer is operated at extremely low

intensities. The intensity may be set, with the help of an absorber, to such a low

level that single photons enter the interferometer one after the other, with an aver-

age distance that distinctly exceeds the armlengths. So we can safely assume that

one photon, at maximum, is present in the interferometer at any instant of time.

Now, it is a matter of fact that an interference pattern emerges also in such extreme

conditions. (Naturally, one has to choose a very long exposition time.) This means

that any individual photon must obey the ‘rules’: In particular, it must ‘know’ that

there are certain places in the observation screen (corresponding to the intensity

minima in the interference pattern) which it should keep clear of, whereas other

places (corresponding to the intensity maxima) should be preferably steered for.

As Dirac [1] put it, the photon ‘interferes with itself’. However, we cannot un-

derstand how it manages to ind out the afore-mentioned phase difference when it

travels – like a classical particle – along just one arm in any individual case. So the

interference phenomenon forces us to assign to any individual photon a position un-

certainty in the sense that it is intrinsically indeterminate which path it takes in the

interferometer. Certainly, this is a macroscopic effect!

The position uncertainty in question is produced in a rather simple way: A

beamsplitter, i.e. a semitransparent mirror, does the job. So we need no interfer-
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ometric device, and hence can make the position uncertainty extremely large. For

instance, we can couple the two output channels of a beamsplitter to an optical ibre

each. Then the position uncertainty grows linearly with time, due to the propagation

of the photon, and this growth is limited in practice only by the absorptivity of the

ibre material. This restriction might be removed by letting the photon, after beam-

splitting, propagate in the cosmic space. So the position uncertainty might attain

really gigantic dimensions.

3. Entangled States

Quantum mechanical uncertainty plays a crucial role in entanglement. This phe-

nomenon is a typical quantum mechanical feature. In fact, any interaction brings the

total system in an entangled state. Of special interest are maximally entangled

states, a typical example being polarization entangled photon pairs (for more details

see for instance [4]).

Two photons are emitted simultaneously into different directions so that they

can be registered by separate detectors. Their polarization states are entangled, i.e.,

they are strongly correlated as expressed by the wavefunction

|ψ〉 =
2

1
(|x〉1 |x〉2 + |y〉1 |y〉2). (3)

Here, |x〉1 describes a photon that is linearly polarized in x direction and propa-

gates in direction 1, and so on. As a result of the propagation the two photons be-

come widely separated. But what can be said about their polarizations? The irst

statement is that the individual polarization is completely indeterminate.

An observer, following a nice tradition let us think of a woman named Alice,

that investigates the photons travelling in direction 1 will arrive at the conclusion

that what she observes is unpolarized light. For measurement she will utilize a po-

larizing prism (a birefringent crystal) with a detector placed in each output channel.

The prism splits an incident beam into two beams that are linearly polarized in two

orthogonal directions. For simplicity, let us assume that the two possible polariza-

tion directions are x and y. (Note that Alice is free to rotate her prism at an arbitrary

angle, but this will not alter her inding that she is dealing with unpolarized light.)

So when the detector in the output channel corresponding to x (y) polarization re-

sponds, it indicates the presence of an x (y) polarized photon. (Strictly speaking, the

detector ‘click’ gives us information on the past only, since the photon gets lost in

the detection process.) So, what Alice will measure is a sequence of events in which

x and y polarizations are indicated with equal probability, at random. This is just a

characteristic feature of unpolarized light. A second observer, let us name him Bob,

who is analyzing the photons propagating in direction 2, will likewise ind the light

to be unpolarized.

Things become amazing, however, when both observers, after having completed

their measurements, come together and compare their data sets. It might surprise

them to see that in any individual case they measured the same polarization (x or y
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polarization). This means that the polarization states of the two photons are correl-

ated as strongly as possible.

Let us now assume that one of the observers, say Alice, executes her measure-

ment a little earlier than the other (Bob). Having an a priori knowledge of the en-

tangled state (3), she has got a clairvoyant capability: Having carried out a meas-

urement on ‘her’ photon, she can predict with certainty the outcome of Bob’s meas-

urement on ‘his’ photon, in any individual case. So the indeterminacy of Bob’s pho-

ton (with respect to its polarization state) has actually disappeared, as a result of Al-

ice’s measurement. Quantum theory claims that this happens instantaneously; what

takes place is the so-called reduction (or collapse) of the wavefunction induced by

measurement. The point is that only one subsystem (photon) is actually subjected to

the measurement, and hence affected physically, but nevertheless the quantum state

of the total system has drastically changed.

The wavefunction (3) collapses to that part that is compatible with the outcome

of the measurement. For instance, when Alice measures x polarization, the wave-

function reduces to

|ψ〉meas = |x〉1 |x〉2. (4)

So we are confronted with the exciting fact that a distant measurement affects

the behaviour of a subsystem in such a way that a variable that is initially uncertain

becomes instantaneously perfectly sharp. Actually, this effect lies at the heart of the

famous Einstein Podolsky Rosen paradox [2]. One may ask what kind of physics

this is. Is it a ghost-like interaction, as Einstein suspected? In fact, it cannot be a

physical effect since any physical action cannot propagate faster than light. An im-

portant point is that the effect in question cannot be used to transmit signals with

superluminal velocity. This would, indeed, violate causality which is one of the pil-

lars the ediice of modern physics rests on. What really happens is a transition from

undetermined to determined, and this is no physical process. This is clear in classi-

cal physics where indeterminacy is identical with a lack of knowledge. So the men-

tioned transition is a mental process in which an existing fact is taken notice of.

Quantum mechanically, one can say that such a transition cannot be followed by

observation, simply because an observation on a single system can never tell us that

the observed variable is uncertain. (Uncertainty can be observed on an ensemble

only; it is indicated by the fact that the outcomes of the measurement differ.) This

explains also that such a transition cannot be made the basis of superluminal signal

transmission.

4. Quantum Computing

Observables have sharp values only when the system is in a corresponding eigen-

state. This implies that quantum mechanical uncertainty is described by a superposi-

tion of eigenstates. The capability to produce superposition states of a desired form

is, in particular, an important prerequisite of quantum computing. It is one of the
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mechanisms that make quantum computing much more efficient than conventional

computing. I would like to explain this in some detail.

Conventional computers use bits, i.e. entities that take on two values ‘1’ and ‘0’,

as basic elements that are subjected to logical operations. In a quantum computer

one can realize those values by two eigenstates of a suitable observable, for in-

stance, spin or energy eigenstates. Let us focus, for deiniteness, on two energy ei-

genstates, a ground state |0〉 and an excited state |1〉 of an ion captured in a linear
Paul trap. A manifold of such ions is, in fact, a promising candidate for quantum

computers to become realized. An important aspect is that any superposition of the

basis states,

|ψ〉 = α |0〉 + β |1〉, (5)

can be generated with the help of laser pulses. In equation (5) α and β are complex

constants subjected only to the normalization condition |α|
2
+ |β|

2
= 1. Hence the ba-

sis system |0〉, |1〉which was named qubit (abbreviation for quantum bit) enables us

to store, in the coefficients α and β, a lot of additional information. This storage ca-

pability becomes really tremendous when we consider many ions, as they are

needed in realistic quantum computers. Be N the number of ions (a typical number

might be N = 100), then the basis states for the whole system can be characterized

by a sequence of binary numbers x1, x2, ..., xN . Here, x1 = 0 (1) indicates that the

irst ion is in the state |0〉 (|1〉), and so on. It is advantageous to ‘translate’ this se-

quence into an integer x by interpreting the numbers x1, x2, ..., xN as the digital re-

presentation of x

x = x1 2
N – 1

+ x2 2
N – 2
+ ... + xN 2

0
. (6)

For given N, the integer x can take on the values 0, 1, 2, ..., 2
N
– 1 . So N ions

give us the opportunity to realize 2
N
states which we will denote by |x〉. The super-

position principle allows us to generate (with the help of tailored laser pulses that

are addressed to the individual ions) a superposition state

|ψ〉 = ∑x xα |x〉, (7)

where the coefficients, apart from the normalization condition, can be set at will.

Thus we can store an incredibly large amount of information in a single quantum

state of the total system. To do the same in a conventional computer we would, for

instance, need the gigantic number of 2
100
storage places, whereas quantum mech-

anics does with no more than 100 ions! So the quantum mechanical superposition

principle allows for massive parallel processing which is, in fact, one of the reasons

for the high eficiency of quantum computers.

However, utilizing quantum theory in this way, we encounter a serious problem:

While it is not difficult, at the present state of the art, to encode 2
N
complex num-

bers into the ionic system, we never can read them out! Seemingly, they have only

virtual existence. In fact, what we can only do is to measure the (total) energy

which gives us just one value x, and nothing more. So the numbers α are, in a sense,

‘hidden’ rather than directly accessible. This need not worry us as long we are per-
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forming calculations with the state (7) in an intermediate step. For instance, a Fou-

rier transformation can be carried out. In this way, use can actually be made of the

‘hidden’ parameters.

What is indispensable, however, is that the inal result of the calculation is com-

prised in just one number x which can actually be read out. For instance, this is so in

Grover’s search algorithm [3] where the quantum state of the total system is even-

tually transformed, through application of a suitable sequence of logic gates, into

just that state |x〉whose argument x we are seeking. Then the measurement yields x,

with certainty, and the problem is solved. It should be noted, however, that the men-

tioned restriction on the quantum algorithms is severe. Actually, it reduces the

mathematical problems that might be successfully attacked with quantum com-

puters to a rather special class, and hence is an unprecedented challenge to mathe-

maticians.
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